Microrobotized blasting improves the bone-to-textured implant response. A preclinical in vivo biomechanical study.
نویسندگان
چکیده
This study evaluated the effect of microrobotized blasting of titanium endosteal implants relative to their manually blasted counterparts. Two different implant systems were utilized presenting two different implant surfaces. Control surfaces (Manual) were fabricated by manually grit blasting the implant surfaces while experimental surfaces (Microblasted) were fabricated through a microrobotized system that provided a one pass grit blasting routine. Both surfaces were created with the same ~50µm average particle size alumina powder at ~310KPa. Surfaces were then etched with 37% HCl for 20min, washed, and packaged through standard industry procedures. The surfaces were characterized through scanning electron microscopy (SEM) and optical interferometry, and were then placed in a beagle dog radius model remaining in vivo for 3 and 6 weeks. The implant removal torque was recorded and statistical analysis evaluated implant system and surface type torque levels as a function of time in vivo. Histologic sections were qualitatively evaluated for tissue response. Electron microscopy depicted textured surfaces for both manual and microblasted surfaces. Optical interferometry showed significantly higher Sa, Sq, values for the microblasted surface and no significant difference for Sds and Sdr values between surfaces. In vivo results depicted that statistically significant gains in biomechanical fixation were obtained for both implant systems tested at 6 weeks in vivo, while only one system presented significant biomechanical gain at 3 weeks. Histologic sections showed qualitative higher amounts of new bone forming around microblasted implants relative to the manually blasted group. Microrobotized blasting resulted in higher biomechanical fixation of endosteal dental implants and should be considered as an alternative for impant surface manufacturing.
منابع مشابه
Early bone healing around implant surfaces treated with variations in the resorbable blasting media method. A study in rabbits.
OBJECTIVE this study aimed to histomorphologically and histomorphometrically evaluate the in vivo response to three variations in the resorbable blasting media (RBM) surface processing in a rabbit femur model. STUDY DESIGN screw root form implants with 3.75 mm in diameter by 8 mm in length presenting four surfaces (n=8 each): alumina-blasted/acid-etched (AB/AE), bioresorbable ceramic blasted ...
متن کاملBiomechanical and histomorphometric analysis of etched and non-etched resorbable blasting media processed implant surfaces: an experimental study in dogs.
This study characterized the interplay between topography/chemistry and early bone response of etched and no-etched resorbable blasted media (RBM) processed surfaces. Screw-root form Ti-6Al-4V implants treated with alumina blasting/acid-etching (AB/AE), RBM alone (RBM), and RBM + acid-etching (RBMa) were evaluated. The surface was characterized by scanning electron microscopy, atomic force micr...
متن کاملBone Tissue Response to Plasma Sprayed Hydroxyapatite Coatings: An In Vivo Study on Rabbit Femoral Condyles
In this study, hydroxyapatite was coated on titanium substrates by plasma spraying process. A well-known porous and lamellar microstructure was found in the lateral a...
متن کاملEvaluating the impact of length and thread pitch on the stress distribution in dental implants and surrounding bone using finite element method
longevity of osseointegrated implants are intensely influenced by biomechanical factors. Control of these factors prevents mechanical complications, which include fracture of screws, components, or materials veneering the framework. In this study, the impact of length and threads pitch of dental implants on the stress distribution and maximum Von Mises stress in implant-abutment complex and ja...
متن کاملThe effect of different implant macrogeometries and surface treatment in early biomechanical fixation: an experimental study in dogs.
Implant surface characterization and biomechanical testing were made to evaluate the effect of different surface treatments along with different implant bulk configurations expressed as biomechanical fixation at early implantation times. Three implant surfaces, namely bioactive ceramic electrodeposition (ED), alumina-blasted/acid etched (AB/AE), and resorbable blasting media (RBM) were fabricat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 56 شماره
صفحات -
تاریخ انتشار 2016